大數(shù)據(jù) (巨量數(shù)據(jù)集合[IT行業(yè)術(shù)語(yǔ)])
大數(shù)據(jù)(big data),指無法在一定時(shí)間范圍內(nèi)用常規(guī)軟件工具進(jìn)行捕捉、管理和處理的數(shù)據(jù)集合,是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力的海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。
在維克托·邁爾-舍恩伯格及肯尼斯·庫(kù)克耶編寫的《大數(shù)據(jù)時(shí)代》中大數(shù)據(jù)指不用隨機(jī)分析法(抽樣調(diào)查)這樣捷徑,而采用所有數(shù)據(jù)進(jìn)行分析處理。大數(shù)據(jù)的5V特點(diǎn)(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價(jià)值密度)、Veracity(真實(shí)性)。
1.定義
對(duì)于“大數(shù)據(jù)”(Big data)研究機(jī)構(gòu)Gartner給出了這樣的定義。“大數(shù)據(jù)”是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應(yīng)海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。
麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲(chǔ)、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫(kù)軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉(zhuǎn)、多樣的數(shù)據(jù)類型和價(jià)值密度低四大特征。
大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對(duì)這些含有意義的數(shù)據(jù)進(jìn)行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對(duì)數(shù)據(jù)的“加工能力”,通過“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”。
從技術(shù)上看,大數(shù)據(jù)與云計(jì)算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無法用單臺(tái)的計(jì)算機(jī)進(jìn)行處理,必須采用分布式架構(gòu)。它的特色在于對(duì)海量數(shù)據(jù)進(jìn)行分布式數(shù)據(jù)挖掘。但它必須依托云計(jì)算的分布式處理、分布式數(shù)據(jù)庫(kù)和云存儲(chǔ)、虛擬化技術(shù)。
隨著云時(shí)代的來臨,大數(shù)據(jù)(Big data)也吸引了越來越多的關(guān)注。分析師團(tuán)隊(duì)認(rèn)為,大數(shù)據(jù)(Big data)通常用來形容一個(gè)公司創(chuàng)造的大量非結(jié)構(gòu)化數(shù)據(jù)和半結(jié)構(gòu)化數(shù)據(jù),這些數(shù)據(jù)在下載到關(guān)系型數(shù)據(jù)庫(kù)用于分析時(shí)會(huì)花費(fèi)過多時(shí)間和金錢。大數(shù)據(jù)分析常和云計(jì)算聯(lián)系到一起,因?yàn)閷?shí)時(shí)的大型數(shù)據(jù)集分析需要像MapReduce一樣的框架來向數(shù)十、數(shù)百或甚至數(shù)千的電腦分配工作。
大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過時(shí)間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫(kù)、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫(kù)、云計(jì)算平臺(tái)、互聯(lián)網(wǎng)和可擴(kuò)展的存儲(chǔ)系統(tǒng)。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
2.應(yīng)用
洛杉磯警察局和加利福尼亞大學(xué)合作利用大數(shù)據(jù)預(yù)測(cè)犯罪的發(fā)生。
google流感趨勢(shì)(Google Flu Trends)利用搜索關(guān)鍵詞預(yù)測(cè)禽流感的散布。
統(tǒng)計(jì)學(xué)家內(nèi)特.西爾弗(Nate Silver)利用大數(shù)據(jù)預(yù)測(cè)2012美國(guó)選舉結(jié)果。
麻省理工學(xué)院利用手機(jī)定位數(shù)據(jù)和交通數(shù)據(jù)建立城市規(guī)劃。
梅西百貨的實(shí)時(shí)定價(jià)機(jī)制。根據(jù)需求和庫(kù)存的情況,該公司基于SAS的系統(tǒng)對(duì)多達(dá)7300萬種貨品進(jìn)行實(shí)時(shí)調(diào)價(jià)。
醫(yī)療行業(yè)早就遇到了海量數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)的挑戰(zhàn),而近年來很多國(guó)家都在積極推進(jìn)醫(yī)療信息化發(fā)展,這使得很多醫(yī)療機(jī)構(gòu)有資金來做大數(shù)據(jù)分析。
3.意義
現(xiàn)在的社會(huì)是一個(gè)高速發(fā)展的社會(huì),科技發(fā)達(dá),信息流通,人們之間的交流越來越密切,生活也越來越方便,大數(shù)據(jù)就是這個(gè)高科技時(shí)代的產(chǎn)物。 阿里巴巴創(chuàng)辦人馬云來臺(tái)演講中就提到,未來的時(shí)代將不是IT時(shí)代,而是DT的時(shí)代,DT就是Data Technology數(shù)據(jù)科技,顯示大數(shù)據(jù)對(duì)于阿里巴巴集團(tuán)來說舉足輕重。
有人把數(shù)據(jù)比喻為蘊(yùn)藏能量的煤礦。煤炭按照性質(zhì)有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數(shù)據(jù)并不在“大”,而在于“有用”。價(jià)值含量、挖掘成本比數(shù)量更為重要。對(duì)于很多行業(yè)而言,如何利用這些大規(guī)模數(shù)據(jù)是贏得競(jìng)爭(zhēng)的關(guān)鍵。
大數(shù)據(jù)的價(jià)值體現(xiàn)在以下幾個(gè)方面:
1)對(duì)大量消費(fèi)者提供產(chǎn)品或服務(wù)的企業(yè)可以利用大數(shù)據(jù)進(jìn)行精準(zhǔn)營(yíng)銷
2) 做小而美模式的中小微企業(yè)可以利用大數(shù)據(jù)做服務(wù)轉(zhuǎn)型
3) 面臨互聯(lián)網(wǎng)壓力之下必須轉(zhuǎn)型的傳統(tǒng)企業(yè)需要與時(shí)俱進(jìn)充分利用大數(shù)據(jù)的價(jià)值
不過,“大數(shù)據(jù)”在經(jīng)濟(jì)發(fā)展中的巨大意義并不代表其能取代一切對(duì)于社會(huì)問題的理性思考,科學(xué)發(fā)展的邏輯不能被湮沒在海量數(shù)據(jù)中。著名經(jīng)濟(jì)學(xué)家路德維希·馮·米塞斯曾提醒過:“就今日言,有很多人忙碌于資料之無益累積,以致對(duì)問題之說明與解決,喪失了其對(duì)特殊的經(jīng)濟(jì)意義的了解?!边@確實(shí)是需要警惕的。
在這個(gè)快速發(fā)展的智能硬件時(shí)代,困擾應(yīng)用開發(fā)者的一個(gè)重要問題就是如何在功率、覆蓋范圍、傳輸速率和成本之間找到那個(gè)微妙的平衡點(diǎn)。企業(yè)組織利用相關(guān)數(shù)據(jù)和分析可以幫助它們降低成本、提高效率、開發(fā)新產(chǎn)品、做出更明智的業(yè)務(wù)決策等等。例如,通過結(jié)合大數(shù)據(jù)和高性能的分析,下面這些對(duì)企業(yè)有益的情況都可能會(huì)發(fā)生:
1)及時(shí)解析故障、問題和缺陷的根源,每年可能為企業(yè)節(jié)省數(shù)十億美元。
2)為成千上萬的快遞車輛規(guī)劃實(shí)時(shí)交通路線,躲避擁堵。
3)分析所有SKU,以利潤(rùn)最大化為目標(biāo)來定價(jià)和清理庫(kù)存。
4)根據(jù)客戶的購(gòu)買習(xí)慣,為其推送他可能感興趣的優(yōu)惠信息。
5)從大量客戶中快速識(shí)別出金牌客戶。
6)使用點(diǎn)擊流分析和數(shù)據(jù)挖掘來規(guī)避欺詐行為。
4.趨勢(shì)
趨勢(shì)一:數(shù)據(jù)的資源化
何為資源化,是指大數(shù)據(jù)成為企業(yè)和社會(huì)關(guān)注的重要戰(zhàn)略資源,并已成為大家爭(zhēng)相搶奪的新焦點(diǎn)。因而,企業(yè)必須要提前制定大數(shù)據(jù)營(yíng)銷戰(zhàn)略計(jì)劃,搶占市場(chǎng)先機(jī)。
趨勢(shì)二:與云計(jì)算的深度結(jié)合
大數(shù)據(jù)離不開云處理,云處理為大數(shù)據(jù)提供了彈性可拓展的基礎(chǔ)設(shè)備,是產(chǎn)生大數(shù)據(jù)的平臺(tái)之一。自2013年開始,大數(shù)據(jù)技術(shù)已開始和云計(jì)算技術(shù)緊密結(jié)合,預(yù)計(jì)未來兩者關(guān)系將更為密切。除此之外,物聯(lián)網(wǎng)、移動(dòng)互聯(lián)網(wǎng)等新興計(jì)算形態(tài),也將一齊助力大數(shù)據(jù)革命,讓大數(shù)據(jù)營(yíng)銷發(fā)揮出更大的影響力。
趨勢(shì)三:科學(xué)理論的突破
隨著大數(shù)據(jù)的快速發(fā)展,就像計(jì)算機(jī)和互聯(lián)網(wǎng)一樣,大數(shù)據(jù)很有可能是新一輪的技術(shù)革命。隨之興起的數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)和人工智能等相關(guān)技術(shù),可能會(huì)改變數(shù)據(jù)世界里的很多算法和基礎(chǔ)理論,實(shí)現(xiàn)科學(xué)技術(shù)上的突破。
趨勢(shì)四:數(shù)據(jù)科學(xué)和數(shù)據(jù)聯(lián)盟的成立
未來,數(shù)據(jù)科學(xué)將成為一門專門的學(xué)科,被越來越多的人所認(rèn)知。各大高校將設(shè)立專門的數(shù)據(jù)科學(xué)類專業(yè),也會(huì)催生一批與之相關(guān)的新的就業(yè)崗位。與此同時(shí),基于數(shù)據(jù)這個(gè)基礎(chǔ)平臺(tái),也將建立起跨領(lǐng)域的數(shù)據(jù)共享平臺(tái),之后,數(shù)據(jù)共享將擴(kuò)展到企業(yè)層面,并且成為未來產(chǎn)業(yè)的核心一環(huán)。
趨勢(shì)五:數(shù)據(jù)泄露泛濫
未來幾年數(shù)據(jù)泄露事件的增長(zhǎng)率也許會(huì)達(dá)到100%,除非數(shù)據(jù)在其源頭就能夠得到安全保障。可以說,在未來,每個(gè)財(cái)富500強(qiáng)企業(yè)都會(huì)面臨數(shù)據(jù)攻擊,無論他們是否已經(jīng)做好安全防范。而所有企業(yè),無論規(guī)模大小,都需要重新審視今天的安全定義。在財(cái)富500強(qiáng)企業(yè)中,超過50%將會(huì)設(shè)置首席信息安全官這一職位。企業(yè)需要從新的角度來確保自身以及客戶數(shù)據(jù),所有數(shù)據(jù)在創(chuàng)建之初便需要獲得安全保障,而并非在數(shù)據(jù)保存的最后一個(gè)環(huán)節(jié),僅僅加強(qiáng)后者的安全措施已被證明于事無補(bǔ)。
趨勢(shì)六:數(shù)據(jù)管理成為核心競(jìng)爭(zhēng)力
數(shù)據(jù)管理成為核心競(jìng)爭(zhēng)力,直接影響財(cái)務(wù)表現(xiàn)。當(dāng)“數(shù)據(jù)資產(chǎn)是企業(yè)核心資產(chǎn)”的概念深入人心之后,企業(yè)對(duì)于數(shù)據(jù)管理便有了更清晰的界定,將數(shù)據(jù)管理作為企業(yè)核心競(jìng)爭(zhēng)力,持續(xù)發(fā)展,戰(zhàn)略性規(guī)劃與運(yùn)用數(shù)據(jù)資產(chǎn),成為企業(yè)數(shù)據(jù)管理的核心。數(shù)據(jù)資產(chǎn)管理效率與主營(yíng)業(yè)務(wù)收入增長(zhǎng)率、銷售收入增長(zhǎng)率顯著正相關(guān);此外,對(duì)于具有互聯(lián)網(wǎng)思維的企業(yè)而言,數(shù)據(jù)資產(chǎn)競(jìng)爭(zhēng)力所占比重為36.8%,數(shù)據(jù)資產(chǎn)的管理效果將直接影響企業(yè)的財(cái)務(wù)表現(xiàn)。
趨勢(shì)七:數(shù)據(jù)質(zhì)量是BI(商業(yè)智能)成功的關(guān)鍵
采用自助式商業(yè)智能工具進(jìn)行大數(shù)據(jù)處理的企業(yè)將會(huì)脫穎而出。其中要面臨的一個(gè)挑戰(zhàn)是,很多數(shù)據(jù)源會(huì)帶來大量低質(zhì)量數(shù)據(jù)。想要成功,企業(yè)需要理解原始數(shù)據(jù)與數(shù)據(jù)分析之間的差距,從而消除低質(zhì)量數(shù)據(jù)并通過BI獲得更佳決策。
趨勢(shì)八:數(shù)據(jù)生態(tài)系統(tǒng)復(fù)合化程度加強(qiáng)
大數(shù)據(jù)的世界不只是一個(gè)單一的、巨大的計(jì)算機(jī)網(wǎng)絡(luò),而是一個(gè)由大量活動(dòng)構(gòu)件與多元參與者元素所構(gòu)成的生態(tài)系統(tǒng),終端設(shè)備提供商、基礎(chǔ)設(shè)施提供商、網(wǎng)絡(luò)服務(wù)提供商、網(wǎng)絡(luò)接入服務(wù)提供商、數(shù)據(jù)服務(wù)使能者、數(shù)據(jù)服務(wù)提供商、觸點(diǎn)服務(wù)、數(shù)據(jù)服務(wù)零售商等等一系列的參與者共同構(gòu)建的生態(tài)系統(tǒng)。而今,這樣一套數(shù)據(jù)生態(tài)系統(tǒng)的基本雛形已然形成,接下來的發(fā)展將趨向于系統(tǒng)內(nèi)部角色的細(xì)分,也就是市場(chǎng)的細(xì)分;系統(tǒng)機(jī)制的調(diào)整,也就是商業(yè)模式的創(chuàng)新;系統(tǒng)結(jié)構(gòu)的調(diào)整,也就是競(jìng)爭(zhēng)環(huán)境的調(diào)整等等,從而使得數(shù)據(jù)生態(tài)系統(tǒng)復(fù)合化程度逐漸增強(qiáng)。